If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8x^2+24x-78=0
a = 8; b = 24; c = -78;
Δ = b2-4ac
Δ = 242-4·8·(-78)
Δ = 3072
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3072}=\sqrt{1024*3}=\sqrt{1024}*\sqrt{3}=32\sqrt{3}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(24)-32\sqrt{3}}{2*8}=\frac{-24-32\sqrt{3}}{16} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(24)+32\sqrt{3}}{2*8}=\frac{-24+32\sqrt{3}}{16} $
| -8y+2(y+2)=22 | | 4+6y=1600 | | 4x+6=1600 | | -(2x+4)=4(x-1) | | 92=-4(4r-5) | | -2(2z+1=26 | | 3z÷7+z=180 | | R(x)=10x+5x | | Q(x)=x3-3x+6x-2 | | P(x)=4x×-1 | | 5t^2+34.6t-60=0 | | 10+x=577 | | 3/2=-7x+9/3x | | 13+d=26 | | 4=-5x+8÷2x+6 | | 3x+7+5x=2=5 | | y+10=42 | | 2x2+2x=20 | | 4=-5x+8/2x+6 | | Y=4094-269x | | 5=n+7/3 | | 7+4(x+2)=3(2x+1)+2 | | 2x+3(-3x+5)=8 | | 8n+6=3n+21 | | 5x-13=3x-4 | | 2x+52=2 | | 22/3•m-6=-206/21 | | 2(-3y+17)+3y=22 | | 5=11x=-204 | | 11x30=2 | | 3r2+5r-2=3r2+4r-12 | | 7(m+3)=112 |